حذف رنَعَـزاى منو آزويیى از يساب نساجى با روش الكترو كـــواگولاسيون

فاطمه صفرى' | محسن شُنبه' | بهاره غالبى

چکيله
در اين تحقيق از 0 حسگًر كششى مبتنى بر منسوج طراحى شده با استفاده از بافندگَى تارى -پودى جهت امكانسنجى اندازهگيرى تغييرات زاويه مفاصل استفاده شد. به اين منظور از نخ مخلوط الياف منقطع فولادو پلىاستر (\& \& ه) و نخ پلىاستر فيلامنت /اسپاندكس به عنوان نخ پود و از نخهاى پلىاستر فيلامنت به عنوان نخ تار استفاده شد. جهت بررسى ميزان حساسيت حسگَرهاى طراحى شده به تغيير زاويه، از يك بازوى طراحى شده و نصب اين حسگًر بر ر وى آن استفاده شد. تغيير شكل بازوى طراحى شده با قرار دادن آن بر روى دستگَاه اندازهگیيرى خصوصيات كششى صورت گرفت. نتايج حاصل از بررسى اثر تعداد نخ رسانا در ساختار حسگَر نشان داد كه با افزايش تعداد نخ رسانا ميزان حساسيت حسگًر افزايش يافته و همچچنين در بررسى اثر تراكم، با افزايش تراكم ميزان حساسيت حسگَر روند صعودى نشان داد. در نهايت برهمكنش بين دو متغير مورد بررسى و تأييد قرار گَرفت.

داده شدند تا يک نخ رسانا شكل بگيرد؛ در مرحله بعد يك نخ لايكر ا روى دو نخ پلىاستر به صورت متقاطع

تشكيل شود.

در نهايت با استفاده از بافندگى تارى- پودی و طرح بافت تافته قسمت رساناى حسگً توليد شد.در تحقيق صورت گرفته به وسيله واتسون و همكاران از سه نوع حسگر كششى براى اندازهگيرى زاويه زانو استفاده

شد.
در نوع اول براى محاسبه زاويه زانو از تغيير طول

شده با نقره را مورد ارزيابى قرار دادند. از حسگرهاى كششى براى كاربردهاى مراقبتى و درمانى نيز استفاده مىشود، بهطور مثال در پثوهش صورت گرفته به وسيله شير و همكاران، از حسگرهاى كششى براى نظارت بر زاويه خم شدن آرنج و زانو

استفاده شد .
در حسگر طراحى شده در اين پ夫وهش از الياف پلى|آميد پوششداده شده با ذرات كربن (الياف PAC)با قطر * هـ ميكرومتر به عنوان ليف رسانا استفاده شدو ها ليف

I - مقدمه
با پيشرفتهاى مداوم در علم و فناورى، محصولات نساجى روزبهروز كاربردىتر مىشوند و لباسها با عملكردى جديد، جايگزين منسوجات متداول شدهاند. امروزه تحقيقات زيادى در راستاى ادغام ساختارهاى

نساجى با الكترونيك انجام شده است. به عبارتى منسوجات الكترونيكى را مىتوان به عنوان منسوجاتى با تابع الكترونيكى و فوتونيكـ تعريف كرد. ادغام ويزگگهاى الكترونيكى به طور مستقيم در پوشاك داراى مزايايى مانند افزايش راحتى، تحرك و همچحنين قابليت استفاده در كاربردهاى زيبايی،
مراقبتى و درمانى است.

روشهاى مختلفى براى طراحى منسوجات الكترونيک عمل كننده به عنوان حسگر وجود دارند كه در برخى از تحقيقات، انواع روشهاو مثالهايى از كاربرد آنما ذكر شده است. يكى از كاربردهاى اين منسوجات هوشمند استفاده از آنها به عنوان حسگَهاى كششى است. در تحقيق صورت گرفته به وسيله گو و همكاران، قسمت رسانا با استفاده از فرايند پوشش كارى و همچچنين با استفاده از نخهاى رسانادر فرايند بافندگى تارى- پودى ايجاد شد. لى و همكاران عملكرد حسگرهاى كششى حلقوى پودى توليد شده با استفاده از نخ نايلون روكش

جدول 1.خصوصيات الكترومكانيك نخ رسانا

ازدياد طول تا حد ياركّى (mm)	استحكام تا حد یارگّى (cN/tex)	مقاومت خطى (ohm/cm)	نمره انگّليسى (Ne)	درصد الياف رسانا در ساختمان نخ
r/if	$15+1+0$	$\mathrm{rr/4}$	r.	\% F \%

طر حواره حسگَرهاى كششى مبتنى بر منسوج طراحى شده، خطهاى قرمز رنگً: نخهاى پود جزء رسانا در

جمع شدگى (\%)	تراكم پودى اسمى (1/cm)	تعداد نخهاى رسانا در راستاى پودى	همار نمونه
ra	10	r.	1
μ 。	10	19	r
rr	10	9	r
r	10	c	c
rr	r.	p	Δ

جهت دستيابى به خاصيت كشسانى علاوه بر نخ
رساناى حاوى الياف فولاد ضدزنگ و پ پلىاستر با

اسپاندكس(־٪/• •1 دنير)، استفاده شد. ظرافت الياف فولاد ضدزنگى ^ ميكرون بود.خصوصيات الكترومكانيكى نخ رساناى استفاده شده در جدول ذكر شده است.
همحچنين از نخهاى یلى استر فيلامنت بادانسيته خطى - • ا دنير به عنوان نخ تار استفاده شد.

توليد حسگرهاى كششى مبتنى بر منسوج استفاده
شد.
r - مواد و روشها ا - - - مشخصات نخ
در اين پثوهش جهت طراحى و توليد حسگرهاى كششى مبتنى بر منسوج از بافندگى تارى پیودى استفاده شد و نمونههایى موردنظر با هدف دستيابى بها با قابليت تغيير ابعاد مناسب در اثر تغيير شكل زاويهاى بها بر اين اساس از فرايند بافندگى تارى-پودى جهت صورت كشسان توليد شدند.

با جابجايى فكى متحر ك دستگاه بازوى طراحى شده نيز تغيير زاويه دادهو به طور همز مان تغييرات مقاومت الكتريكى حسگَر نيز با استفاده از مدار الكترونيى اندازْ بر اساس شكل «r، با تغذيه ه ولت به مدار و و با با اندازهگيرى مقدار ولتاز دو سر حسگَر كه همواره در حال تغيير است، مىتوان با استفاده از رابطه ا مقدار مقاومت حسگر طراحى شده رادر هر لحظه محاسبه

كرد: $V_{\text {out }}=\left(\frac{V}{R_{\text {fabric }}+R_{\text {resistance }}}\right) \times R_{\text {fabric }}$

سرعت حركت فك متحر ك دستگاه •ه ميليمتر بر دقيقه و از زاويه •q تا •ب درجه زاويه مفصل تغيير ييدا كرد.

به عبارت ديگر فاصله بين فك ثابت و متحرى دستگاه در حال افزايش بود. در شكل با ن نماى كلى موقعيت دو بازوى مفصل در دو زاويه • 9 و • برجه نشان داده شده است. همحچنين در يك سيكل رفت و برگشت، تغيير زاويه به نمونه اعمال شد و تغييرات ولتاز عبورى و مقاومت
نمونهها در حين آن ثبت شد.

نشان داده شده است.
ץ-ץ-ابزار و مدار الكترونيكى استفاده شده به منظور بررسى رفتار الكتريكى و ميزان حساسيت حسگَر به تغييرات زاويه، از بازوى طراحى احى شده مطابق شكل r با قابليت نصب بر روى دستگاه اندازهگيرى خصوصيتهاى كششى استفاده شد. طراحى دو قسمت انتهايى (A A) اين ساختار به گونهاى است كه در زمان كاهش فاصله بين دو فك الــ دستگاه، خم شدن آن از مفصل ميانه (B) آن اتفاق

خواهد افتاد.
ثبت تغييرات الكتريكى رفتار حسگر در اثر تغيير شكل با استفاده از يك مدار الكترونيكى مجهز بها پردازشیر آرديونو انجام شد. در شكل ّ ساختار كلى مدار الكترونيكـ طراحى شده و قرار گيرى نمونه به عنوان يكـ مقاومت در آن نشان داده شده است. حسگَر مبتنى بر منسوج بر روى بازوى طراحى شده قرار گرفته و سیس از اين بازي از از دو انتها بر روى برى فكهاى دستگاه اندازهگيرى خصوصيات كششى زوئيى كه بر اساس نرخ ثابت ازدياد طول عمل

مى كند، قرار داده شد.
r-r-r-مشخصات پֶار
تراكم تارى اسمى نمونههاى توليد شده •ب در در سانتيمتر و طرح بافت نمونههاى مختلف تافته بود. D هسگر كششى مبتنى بر منسوج بر مبناى شكل ا به گونهااى طراحى و توليد شد كه قسمت رسانا
 كرفته شود.
عرض نمونههاى مورد استفاده در اين پثروهش
 نخهاى رسانا به تعداد مختلف بر اساس جدول آر آ، در راستاى پود قرار داده شد.
 راستاى پودى از نمونه جدا شده است. نمونههاى موردنظر چس از توليد و آمادهسازى به مدت • ا دقيقه تحت عمليات استراحت خيس قرا ر داده شدند . علاوه بر تعداد نخهاى رسانا در ساختار حسگر، تأثير تراكم پودى نيز بر روند تغييرات خصوصيتهاى الكتريكى حسگرهاى طراحى شده با تغيير زاويه

بررسى شد. در جدول r مشخصههاى نمونههاى توليد شده و ميزان جمحشدگى پودى أنها پس از فرايند استراحت

شكله. مقايسه نمودارهاى تغييرات ولتارَ-زاويه نمونههاى F او ه در سيكلهاى رفت و برگشت

سيكل رفت نسبت داد كه در سيكل دوم احتمال برگشت بيشتر است. از سوى ديگً مشاهده ميشود كه عملاً نمونه ه هنيز مشابه نمونه \uparrow در سيكل رفت تنييرات مشخصى در

برابر تغيير زاويه نشان نداده است.
نتايج حاصل نشان داد كه هر دو عامل تعداد نخ رسانا
در ساختار حسگر كششى مبتنى بر منسوج و تراكمم پودى آن، تأثير مشخصى بر روى حساسيت در برابر تغيير زاويه، اين حسگر ها نشان مىدهند.

¢

در اين ثروهش تأثير تعداد نخهاى رسانا در ساختار

 كششى مبتنى بر منسوج در اثر تغيير زاويه، مورد

بررسى قرار گرفت.
جهت شبيهسازى فرايند تغيير شكل زاويهاى، از يـى بازوى طراحى شده با قابليت نصب بر روى دستگاه

اندازهگيرى خصوصيات كششى استفاده شد. نتايج حاصل نشان داد كه رفتار الكترومكانيكى نمونههاهى مختلف به واسطه جمعشدگى متفاوت نمونهها، تحتتأثير تعداد نخهاى رسانا و همحֶنين فواصل بين نخهاى رسانا است.
 افزايش ولتاز عبورى از ساختار حسگر طراحى شده

راباعث ميشود.
از سوى ديگر با تنيير زاويه از •9 به • • درجه، با كاهش زاويا، روند تغييرات ولناز تقريباً ثابت و ختى

نزولى بود.
در توجيه روند فوق، بها كاهش كشش و و تنش وارد بر نخهاى رسانا مىتوان اشاره كرد كه احتمالاً منجر به

كاهش فشردگى نخهاى رسانا ميشود. بنابراين احتمال تماس نخهالى رسانا و الياف موجود در ساختار نخ با يكديگر كاهش يافته و مقاومت الكتريكى نمونه افزايش خواهد يافت.
「 「 نمونه ¢ و به عبارت ديحَر شيب نمودار نسبت به نمونه
"ّ بيشتر است. روند مشاهله شده را به جمحشدگى بالاتر نمونه
 نمونههاى پودى از ها با به •Y در سانتيمتر، حساسيت حسگر طراحىشده در ثبت تغييرات ولتاز به واسطه تغيير زاويه،، افزايش يافتها است.

نكته قابل توجه اين است كه نمونهها با يكى كشش يكسان بر روى بازويى قرار گرفتند.

ץ- نتايج وبحث

بررسى نتايج حاصل از تغيير شكل نمونههاى مختلف نشان داد كه در نمونههاى توليد شده با استفاده از .r. سيكل رفت و بر گَشت مثبت است. در سيكل رفت، تغييرات ولتاز رابه ازدياد طول نخهاى رسانا مىتوان نسبت داد كه منجر به افزايش احتمال تماس الياف رسانا در ساختمان نخهاى رسانا خواهد شـ.
از سوى ديگر در سيكل برگشت نيز جمعشدگى نمونههاى اشاره شده منجر به افزايش احتمال تماس نخهاى رسانا در ساختار حسگر طراحى شده خواهد

در شكل ه نمودار تغييرات ولتا ز-زاويله نمونههاى
 داده شده است. تجزيه و تحليل نمودارهاى ارائه شده نشان مىدهد

از
روند صعودى تغييرات ولتاز در سيكل برگشت را مىتوان به جابجايى نخها در ساختار حسگَر پس از

